Topological Representation of the -calculus
نویسنده
چکیده
The-calculus can be represented topologically by assigning certain spaces to the types and certain continuous maps to the terms. Using a recent result from category theory, the usual calculus of-conversion is shown to be deductively complete with respect to such topological semantics. It is also shown to be functionally complete, in the sense that there is always a \minimal" topological model, in which every continuous function is-deenable. These results subsume earlier ones using cartesian closed categories, as well as those employing so-called Henkin and Kripke-models.
منابع مشابه
dominating subset and representation graph on topological spaces
Let a topological space. An intersection graph on a topological space , which denoted by , is an undirected graph which whose vertices are open subsets of and two vertices are adjacent if the intersection of them are nonempty. In this paper, the relation between topological properties of and graph properties of are investigated. Also some classifications and representations for the graph ...
متن کاملA representation for some groups, a geometric approach
In the present paper, we are going to use geometric and topological concepts, entities and properties of the integral curves of linear vector fields, and the theory of differential equations, to establish a representation for some groups on $R^{n} (ngeq 1)$. Among other things, we investigate the surjectivity and faithfulness of the representation. At the end, we give some app...
متن کاملTHE DUALITY OF THE L?-REPRESENTATION ALGEBRA ?(S ) OF A FOUNDATION SEMIGROUP S AND FUNCTION ALGEBRAS
In the present paper for a large family of topological semigroups, namely foundation semigroups, for which topological groups and discrete semigroups are elementary examples, it is shown that ?(S) is the dual of a function algebra.
متن کاملRepresentation and duality of the untyped lambda-calculus in nominal lattice and topological semantics, with a proof of topological completeness
We give a semantics for the λ-calculus based on a topological duality theorem in nominal sets. A novel interpretation of λ is given in terms of adjoints, and λ-terms are interpreted absolutely as sets (no valuation is necessary).
متن کاملTOPOLOGICAL CHARACTERIZATION FOR FUZZY REGULAR LANGUAGES
We present a topological characterization for fuzzy regular languages: we show that there is a bijective correspondence between fuzzy regular languages and the set of all clopen fuzzy subsets with finite image in the induced fuzzy topological space of Stone space (Profinite space), and then we give a representation of closed fuzzy subsets in the induced fuzzy topological space via fuzzy regular...
متن کاملOn the irreducibility of the complex specialization of the representation of the Hecke algebra of the complex reflection group $G_7$
We consider a 2-dimensional representation of the Hecke algebra $H(G_7, u)$, where $G_7$ is the complex reflection group and $u$ is the set of indeterminates $u = (x_1,x_2,y_1,y_2,y_3,z_1,z_2,z_3)$. After specializing the indetrminates to non zero complex numbers, we then determine a necessary and sufficient condition that guarantees the irreducibility of the complex specialization of the repre...
متن کامل